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WILLIAMS, M. AND M. F. JARVIS. Adenosine antagonists as potential therapeutic agents. PHARMACOL BIOCHEM 
BEHAV 29(2) 433-441, 1988.--The methylxanthine caffeine has been identified in more than 60 plant species and has been 
in human use for its various therapeutic actions for many hundreds of years and perhaps, with the exception of aspirin and 
related compounds, is the most widely consumed drug today. Pharmacologically, the xanthines are prototypic inhibitors of 
the enzyme, cyclic nucleotide phosphodiesterase, are calcium mobilizers and have been reported to inhibit the enzymes, 
monoamine oxidase and cyclooxygenase as well as affect uptake of the putative neuromodulator, adenosine. However, 
many of the therapeutic effects ascribed to caffeine are due to its selective ability to antagonize the actions of adenosine. 
Many xanthines, especially those substituted in the 8-position with a phenyl derivative, are potent and selective adenosine 
antagonists.The xanthine adenosine antagonists have mild psychostimulant, analgesic adjuvant, diuretic, cardiotonic and 
antiasthmatic activity. Adenosine antagonists also have nootropic activity. A major limiting factor to the development of 
this class of compound has been in the lack of selectivity for either of the major classes of adenosine receptor. Several 
non-xanthines including the pyrazolopyrimidine, DJB-KK, the pyrazoloquinoline, CGS 8216 and the pyrazolopyridine, 
etazolate have been shown to have adenosine antagonist activity. The triazoloquinazoline, CGS 15943 A has been identified 
as the first, potent (IC5o=3 nM) nonxanthine, Az-selective adenosine antagonist while the phenylquinazoline, HTQZ, has 
25-fold selectivity for the A2 receptor. The availability of such novel entities may permit the development of a new class of 
therapeutic agents able to affect neuromodulator, as opposed to neurotransmitter, function. 

Adenosine CGS 15943 A Xanthines Caffeine Analgesia Psychostimulants Nootropics 
Dopamine Self mutilation 

THE xanthine caffeine (Fig. I) was first isolated from coffee 
in Germany in 1820 [3] and has since been identified in more 
than 60 plant species [4]. The use of beverages containing 
caffeine has been documented for over 40 centuries, making 
the xanthine one of the most effectively studied compounds 
in human use. Caffeine is also found in chocolate, although 
its major ingredient use is in coffee and in a variety of soft 
drinks. Worldwide, the average daily consumption of caf- 
feine has been estimated at 50 mg per person per day [45], 
while in the U.S. this figure is four times as high [48]. 

The trend toward decaffeinated beverages because of the 
psycho-, cardio- and respiratory stimulant properties of the 
xanthine [86, 9l,  100, 112], together with its observed 
teratogenic actions [27], is indicative of the ready bioavaila- 
bility and potency of this class of compounds and may reflect 
the less than enthusiastic reception for such compounds as 
therapeutic entities. Administration of xanthines can elicit 
biphasic actions on locomotor activity [101], changes in core 
temperature [14,93], seizure activity [88], bronchodilation 
[39], diuresis, diarrhea [86], tachycardia [5], insomnia [85], 
anxiety [15], respiration [108] and cardiac arrhythmias [28]. 

Mechanistically, caffeine and related xanthines are 
prototypic inhibitors of the enzyme, cyclic nucleotide phos- 
phodiesterase and calcium mobilizers [86]. In addition, 

xanthines have also been reported to affect the activity of the 
enzymes, monoamine oxidase [36] and cyclooxygenase 
[109], as well as modulate the uptake of the putative neuro- 
modulator, adenosine [56]. It is generally accepted however, 
that the majority of actions ascribable to therapeutic doses of 
the xanthine are due to its action as an adenosine receptor 
antagonist [25, 30, 99, 110, l l3]. 

In the 15 years that have elapsed since it was first 
suggested that caffeine, and the related xanthine, theophyl- 
line were adenosine antagonists [91], considerable progress 
has occurred in defining the physiological role of the purine 
and in reappraising the mechanisms by which xanthines 
produce their observed therapeutic actions. Theophylline 
(Fig. I) and its ethylene diamine salt, aminophylline, have 
been used as antiasthmatic and cardiotonic respectively [21], 
yet their mechanism of action remains controversial. 

The development of 8-phenyl-substituted xanthines as 
selective adenosine antagonists [l l, 23, 34, 60, 98], was a 
major step forward in validating the adenosine hypothesis. 
However, these compounds, most notably PACPX (1,3-di- 
propyl-8-(2-amino-4-chloro)phenylxanthine; Fig. l; [l 1]), 
have suffered from solubility problems that have precluded 
their potential use as therapeutic tools. Continuing efforts 
have however resulted in the development of compounds 
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FIG. 1. Structures of xanthine adenosine antagonists. 

such as the amine congener XAC (Fig. 1); [60] and PD 
113,297 and related compounds (Fig. 1) [8a-10] that are rela- 
tively water soluble. 

Non-xanthines such as the pyrazolopyridine,  etozolate 
(Fig. 2) [115] and the pyrazolopyrimidine,  DJB-KK (Fig. 2) 
[26] have also been reported to have some degree of 
adenosine antagonist activity. The serendipitous identifica- 
tion of  such activity in the pyrazoloquinoline benzodiazepine 
inverse agonist, CGS 8216 (Fig. 2) [22,115] led to the subse- 
quent identification of a series of non-xanthine adenosine 
antagonists, the triazoloquinazolines [37], typified by CGS 
15943 A (Fig. 2) [43,116]. 

RECEPTOR SELECTIVE ADENOSINE ANTAGONISTS 

In addition to selectivity for the adenosine receptor,  as 
opposed to their other potential sites of action, xanthines 
selective for the two types of adenosine receptor  are attrac- 
tive in defining therapeutic targets for adenosine antagonists. 
Despite the fact that the physiological actions of adenosine 
were demonstrated over 50 years ago ]29], it is only in the 
past  decade that tangible evidence has accumulated for the 
existence of  distinct adenosine receptors located on the cell 
surface and, subsequently, receptor subtypes. Two major 
receptor  subclasses exist,  termed A, and Az [25,53]. These 
differ in their pharmacological selectivity for adenosine 
agonists. At the A, receptor,  purine nucleosides substituted 
in the N 6 position, i.e., N6cyclohexyladenosine (CHA), 
N%yclopentyladenosine (CPA) and N~henyl isopropyl -  
adenosine (PIA) are the most active with nucleosides substi- 
tuted in the 5' (N-ethylcarboxamidoadenosine;  NECA) and 2 
positions (2-aminophenyladenosine; CV 1808), being less 
active. The converse is true at the A2 receptor  although it 

should be noted that while there are A, selective agonists 
such as CPA that are over 700-fold selective [9], at the A.2 
receptor  the compounds available are either equiactive at 
both receptor subtypes (NECA) or are approximately 
5-times more selective for the A2 than the A, receptors (CV 
1808). The lack of availability of really selective agonists has 
hampered basic research efforts in the area and has to some 
extent led to an untenable a priori  situation in that effects 
elicited by NECA have been ascribed to A., receptor activa- 
tion when, in fact, it is only those responses that are elicited 
by NECA and not by A~ selective compounds such as CPA, 
that can be legitimately called A~ in nature. Receptor de- 
lineation is additionally complicated by reports [62, 66, 79, 
87] that receptors sensitive to adenosine agonists may exist 
in additional subtypes that can be classified as neither A~ nor 
A2 although it is possible that these are, in fact, subtypes of 
the two major subclasses [9,24]. 

The development of receptor selective adenosine 
antagonists has proved difficult, While the majority of xanth- 
ine antagonists are A, selective (Table 1) with only PD 115, 
199 [10], 1-propargyl 3,7-dimethylxanthine (PADX; Fig. 1) 
and 7-propyl 1,3 dimethylxanthine (PDX) (Fig. 1) [103] show- 
ing an increase in activity at the Az receptor,  P A D X  and 
PDX are 3- to 7-fold selective for the A2- receptor. These 
xanthines are, however,  relatively weak antagonists with 
activities in the micromolar range [103] (Table 1). On the 
other hand, while PD 115,199 is active in the nanomolar 
range at the A2 receptor [10], like NECA,  it is non-selective 
rather than A2 selective. The triazoloquinazoline, CGS 15943 
A [116] is an A2 selective antagonist with an approximate 
8-fold separation in activity between the two receptor sub- 
types while HTQZ (3(3-hydroxyphenyl)5H-thiazolo [2,3b]- 
quinazoline (Fig. 2) is 25-fold A2 selective [8]. 
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TABLE 1 
RECEPTOR SELECTIVITY OF SELECTED 

ADENOSINE ANTAGONISTS 

IC50 (nM) 

Compound A~ Az A2/A1 

Theophylline 14900 37530 39 
PACPX 54 589 109 
PD 113,297 8.2 104 12.7 
PD 115,199 14 16 1.1 
PADX* 94000 4000 0,04 
PDX* 109000 9300 0,09 
Etazolate 6100 13800 2.3 
DJB-KK 168 736 4.4 
CGS 15943 A 21 3.3 0.16 
HTQZ 3070 124 0.04 
XAC 15 83 5.5 

*Data derived from fat cell and platelet adenylate cyclase data 
[103]. All remaining data based on brain binding, [10, 11,102, 112, 116]. 

INTERSPECIES VARIATIONS IN XANTHINE RELATED EFFECTS 

The effects of  caffeine in humans vary widely between 
individuals, from those to whom a single cup of coffee can 
cause mild tremors to others who can imbibe 10-15 cups a 
day with no apparent  ill effects. While such responses may 
be attributable to differences in the metabolism of the xan- 
thine [49], adenosine systems including A, [34, 74, 94, 96] 
and A2 [102] receptors,  uptake sites for the purine [106] and 
5'-nucleotidase [65] the enzyme responsible for formation of 
adenosine from 5'-AMP, appear to have marked interspecies 
differences [110]. In regard to receptor  pharmacology, such 
differences are especially pronounced for xanthine interac- 
tions with PACPX having a Ki value of 0.18 nM at A1 recep- 
tors in calf brain and a Ki of 71 nM in guinea pig brain [102]. 
These findings present problems for the identification of 
selective xanthine adenosine antagonists even when compar- 
ing interactions at A~ and A2 receptors in the same species. 
In man for instance, PACPX, based on its receptor binding 
profile is slightly A2 selective (A2/Aa Ki ratio=0.6). How- 
ever, in calf brain, this ratio is 233 [102]. 

Such studies have been expanded at the behavioral level 
to examine interstrain differences in the CNS responses of 
mice to methylxanthines [95], such differences being related 
to complex genetic determinants. Extrapolation from mice to 
humans may given some clues as to why caffeine responses 
vary from individual. However ,  in considering the reported 
species, as opposed to strain, differences in xanthine inter- 
actions with adenosine receptors which are far more dra- 
matic than those seen for antagonists [35,102], it is worth- 
while considering, from a theoretical viewpoint what such 
differences may mean. The receptor  charcteristics (Kd, 
Bmax) for both A~ and A2 receptors do not appreciably differ 
between the two species, hence it is unlikely that calves are 
more sensitive to PACPX than guinea pigs because of  the 
presence of supersensitive receptors.  This conclusion is rein- 
forced by the finding that the adenosine agonist, CHA, is 
only 10-fold less active at A~ receptors in guinea pig as 
compared to calf  [35] and 3-fold more active at As receptors 
in guinea pig [102]. If  can be speculated that guinea pig has 
more of some endogenous inhibitory substance than calf that 
would dramatically interfere with the interactions of xan- 
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FIG. 2. Structures of atypical adenosine antagonists. 

thines with adenosine receptors but would have less of an 
effect on purine interactions. This delineation between the 
effects of adenosine antagonists and agonists have been 
considered in relation to the chronic effects of caffeine on 
acetylcholine release [•8]. Alternatively it is possible that the 
portion of the adenosine receptor  responsible for xanthine 
binding is different between species. The xanthine congener, 
[aI-I]XAC, has higher affinity in calf than in guinea pig [60]. 
Whatever the reasons for such differences, their teleological 
significance is not readily apparent. 

Again, using PACPX as an example, the rank order of 
activity for the xanthine at A1 receptors in six species is: calf 
> rabbit > ra t=mouse  > man > guinea pig [35] while at the 
A2 receptor,  this order is: rabbit > man > calf > guinea pig 
> mouse > rat [102]. Thus the species order is not consistent 
between the receptor subtypes and, in addition, there is no 
clear hierarchy in the xanthine responses that could be of 
phylogenetic significance. An additional complicating factor 
is that while there is a substantial amount of data indicating 
that caffeine is a competitive antagonist at adenosine recep- 
tors [25], there is some controversy as to whether PACPX is 
competit ive or non-competitive [ l l ,  13, l l0] .  Additional 
studies in this area, with the availability of  CGS 15943 A and 
HTQZ, may clarify as to whether these species differences 
are observed with all adenosine antagonists or are unique for 
the xanthines. 

THERAPEUTIC POTENTIAL--PRECLINICAL PREDICTIONS 

The development of  adenosine antagonists as therapeutic 
agents has been predicated on the physiological actions of  
the natural ligand for the adenosine receptor,  namely the 
purine itself. There is a wealth of  evidence to indicate that 
adenosine antagonists are effective modulators of tissue 
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function because of the general availability of endogenous 
adenosine in the vicinity of cell surface receptors. The con- 
cept of a general purinergic inhibitory tone [54] has been 
demonstrated in the ability of xanthines to potentiate loco- 
motor activity [40,101] and increase neurotransmitter release 
[82] and cell firing [31]. The lack of availability of potent and 
selective compounds that are as bioavailable as caffeine and 
theophyUine has resulted in much of the therapeutic poten- 
tial of adenosine antagonists per se being more conjecture 
than fact. This is hardly surprising when considering the 
tremendous advances that have been made in regard to the 
drug discover process in the last decade [114]. There are in 
fact many theories, based on basic and applied research at 
the preclinical level, that have yet  to be tested in the final 
human paradigm for validation. Many of the peptide neuro- 
modulators that represent current targets for the develop- 
ment of novel therapeutic agents are in a similar situation to 
adenosine and it is equally apparent that many of the predic- 
tions based on the study of known compounds by what might 
be aposteri approach are not subject to validation because of 
the lack of selective compounds. 

In the area of adenosine modulation there are several at- 
tractive targets that reflect the importance of the purine in 
cellular physiology, yet the very ubiquity of the compound 
together with marked species differences described above 
has led to a degree of skepticism that has been further rein- 
forced by the use of theophylline and aminophylline as 
antiasthmatics and cardiotonics. In either instance the 
therapeutic usefulness of the compounds has been compli- 
cated by side effects associated with the putative blockade of 
adenosine receptor  related events in tissue systems other 
than those targeted for in the therapeutic indication. How- 
ever, since the chemical entities used were not dramatically 
different from that isolated in the early 19th century [3], it is 
difficult to objectively view this as a natural limitation of the 
system as opposed to the relative mediocrity of the tools 
available. With hindsight, one would be hard pressed to 
argue for the enormous benefits of H2-receptor antagonists 
such as cimetidine, if only pyrilamine were available and had 
been shown to be ineffective in the treatment of gastric ul- 
ceration. 

CNS INDICATIONS 

Nootropic/Cognitive Enhancer 

The psychostimulant actions of caffeine are attributed to 
the xanthine blocking the purinergic inhibitory tone that re- 
duces neurotransmitter release and in doing so increase 
'a ler tness . '  The effects of the xanthine have been studied 
using the 2-deoxyglucose method [78] leading to the conclu- 
sion that caffeine increases functional activity. These effects 
are dose dependent  and show some degree of  regional speci- 
fity that has been attributed to blockade of A2 receptors [78] 
an interesting conclusion in light of the fact that the xanthine 
is non-selective in its effects on receptor blockade. 

The psychostimulant actions of caffeine provide a plaus- 
ible link for the use of an adenosine antagonist as a nootropic 
or cognitive enhancer. One xanthine, HWA 825 (Fig. 1) [56], 
has been tested in humans for this indication and positive 
results have been reported. It may be noted, however,  that 
HWA 825 has an unusual profile of activity in vivo and has 
been described as an agonist at adenosine receptors [52]. 
Although the differences may be semantic, compounds that 
cause a general increase in alertness (cognitive or vigilance 
enhancers) and nootropics,  compounds used to arrest or re- 

verse the general effects of the aging process on CNS func- 
tion via as yet unknown mechanisms, are generally consid- 
ered to reflect closely associated, yet different classes of 
compound. Caffeine at doses higher than those at which it 
acts as a psychostimulant is an anxiogenic [15,86] and it is of 
interest that CGS 8216, the pyrazoloquinazoline ben- 
zodiazepine inverse agonist with weak adenosine antagonist 
activity (Table 1) [22,115], has activity as a vigilance 
enhancer [6]. It is of further interest that compounds of the 
benzodiazepine inverse agonist class have demonstrated 
nootropic activity [105]. A major problem in further explor- 
ing the validity of the concept that xanthines may be noot- 
topic agents is their lack of tissue selectivity. In dealing with- 
the geriatric population, the side effects associated with 
human use of xanthines, i.e., cardiac stimulant and diuretic, 
assume proportions that preclude any consideration of a vi- 
able therapeutic index. 

Cerebral Blood Flow Modulator 

In assessing the effects of compounds on CNS function, it 
is usual to focus attention on the target organ, more specif- 
ically, the effects of a given compound on synaptic trans- 
mission. However,  the brain, like other tissues is dependent 
on oxygen for function and there has been a continuing con- 
troversy as to whether the effects of peripherally adminis- 
tered adenosine on CNS function are due to direct actions on 
brain function or are indirect via a decrease in blood pressure 
[61, 83, 101]. 

Xanthines are effective modulators of cerebral blood flow 
[32, 51, 78] presumably acting via blockade of adenosine 
receptors present in cerebral arteries. Cerebral blood flow 
appears to be under direct metabolic control, increases in 
glucose and oxygen demand being reflected by increases in 
blood flow [69]. However ,  caffine has been reported to in- 
crease cerebral glucose utilization while concomitantly de- 
creasing cerebral blood flow [51]. In contrast,  the putative 
nootropic HWA 825 [56] can increase cerebral blood flow 
while decreasing glucose utilization [51]. Despite the fact 
that adenosine can be formed from the endothial cells of the 
microvasculature [72] and has been proposed as the chemical 
link between brain metabolism and cerebral blood flow 
[119,120], it has been reported [81] that caffeine cannot affect 
autoregulatory flow responses during hypotensive episodes 
in rats. The situation in regard to the effects of xanthines and, 
by extrapolation, purines, in the regulation of cerebral blood 
flow is therefore complex. The possibility that compounds 
affecting the purinergic innervation to cerebral microvessels 
might be of use in migraine [12] remains to be evaluated. 

Respiratory Stimulants 

Methylxanthines are widely used in the treatment of 
apnea (sudden infant death syndrome: SIDS) of preterm in- 
fants [2], an action that appears to be due to their ability to 
antagonize the effects of the adenosine released during 
hypoxemia [63]. Adenosine is an effective respiratory de- 
pressant [33, 73, 108] producing its actions via A2 receptors 
associated with carotid chemoreceptors  [70,71]. Cessation of 
blood flow to the brain as a result of cardiac arrest can lead 
to ischemic episodes that result in stroke and the attendant 
loss of CNS function. The reactive hyperemia that results in 
cardiac tissues from hypoxia and which is thought to con- 
tribute significantly to the tissue damage resulting from the 
reduction in oxygen supply [44] can be attenuated by 
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theophylline, suggesting that adenosine mediates this phe- 
nomenon and also that xanthines may have potential in limit- 
ing the t issue damage associated with ischemia. 

Analgesia 

Xanthines have been reported to reduce morphine 
analgesia [58], produce algesia [104] and have antinocicep- 
tive activity [122]. Adenosine has also been reported to have 
similar conflicting activities [1, 46, 104]. IBMX (3-isobutyl- 
1-methylxanthine), a xanthine that is a weak adenosine 
antagonist and a prototypic phosphodiesterase inhibitor, can 
elict a 'quasi-morphine withdrawal syndrome'  (QMWS) [17] 
that appears to be associated with increases in norepineph- 
rine turnover [42]. Caffeine is used clinically as an analgesic 
adjuvant [64] an action that may be attributed to the ability of 
xanthines to inhibit cyclooxygenase activity [109]. 

Xanthines, Locomotor Activity and Central Dopaminergie 
Systems 

The increase in locomotor activity associated with caf- 
feine and theophylline administration [40,61], is manifest as 
contralateral rotational behaviour in rats unilaterally 
lesioned in the nigrostriatal dopamine pathway, an effect 
similar to that observed following administration of selective 
dopamine agonists [41]. The xanthines can also potentiate 
the effects of dopamine agonists as well as the ipsilateral 
turning produced by amphetamine. These effects appear to 
be due to the adenosine antagonist actions of the xanthines 
[40] and can be antagonized by the dopamine antagonist, 
haloperidol [41,90], suggesting that the monoamine is 
mediating the effects of the xanthines. Since caffeine has no 
direct interactions with dopamine receptors either in vitro or 
in vivo [108] it is likely that the locomotor stimulatory ac- 
tions of caffeine and theophylline are due to removal of the 
purinergic inhibitory tone [54] and a consequent increase in 
the intersynaptic availability of dopamine. Striatal dopamine 
metabolism can be reduced by administration of stable 
adenosine agonists [77], and while xanthines can affect the 
availability of  a number of putative neurotransmitters 
[82,114], in vivo, caffeine can selectively modulate 
dopaminergic function [47]. In this regard, caffeine has been 
suggested as a therapeutic adjuvant with dopamine agonists 
in the treatment of Parkinsonism [41]. A selective disruption 
of dopaminergic nerve terminals occurs in brains from pa- 
tients with Lesch-Nyhan syndrome [68], a self-mutilatory 
disease characterized by a deficit in purine metabolism. Such 
neurological disease states may result from an excessive 
stimulation of adenosine receptors by the accumulated 
purines [57], although it may be noted that a large dose of 
caffeine can elicit self-destructive behaviour similar to that 
observed in Lesch-Nyhan syndrome [7]. Purinergic mech- 
anisms have also been implicated in the apomorphine- 
induced self mutilation behavioral syndrome [50]. There is 
thus a considerable amount of experimental data linking 
dopamine with central adenosine systems, a relationship 
reinforced by the preferential localization of high affinity A2 
receptors in striatum [9, 24, 84, 118, 121] and by the obser- 
vation that caffeine effects on brain glucose utilization are 
most pronounced in dopamine-rich regions [78]. Further- 
more, adenosine agonists have been reported to have anti- 
psychotic-like actions in certain animal models [55] 
presumably related to their ability to decrease dopamine syn- 
thesis [77]. The effects of  xanthines on central neurotrans- 

mitter metabolism and release appear  to be tolerated follow- 
ing chronic treatment [123], an effect attributed to the in- 
creases in A1 receptor density observed following chronic 
treatment [38,76]. However,  using an in vitro slice release 
paradigm, it has been reported [18] that chronic caffeine 
treatment can attenuate the enhancing effects of the xanthine 
on acetylcholine release without affecting the inhibitory ac- 
tions of CHA. This observation may indicate that adaptive 
changes to chronic caffeine treatment may involve mech- 
anisms more complex than the interaction of  the xanthine 
with adenosine receptors although it may be noted that 
changes in A2 receptors following chronic studies have not 
been documented. 

Miscellaneous 

Based on anecdotal evidence [27], caffeine, in the form of 
coffee, has been suggested to facilitate nicotine consumption 
and increase the hedonia associated with chocolate con- 
sumption, an effect that may be related to a purinergic com- 
ponent in taste intensity [92]. Xanthines may also modify the 
effects of purines on food intake [67]. 

ANTIASTHMATICS 

Theophylline, along with fl-adrenoceptor agonists, is one 
of the major therapeutic agents used as bronchodilator in the 
treatment of asthma [21] and is generally considered to 
produce its actions via inhibition of phosphodiesterase ac- 
tivity which parallel the effects of/3-agonists and forskolin in 
increasing tissue cyclic AMP levels. Adenosine can poten- 
tiate histamine release from mast cells following an allergic 
challenge [16]. Broncoconstriction can be produced in as- 
thmatics but not normal subjects by the purine, an effect that 
can be antagonized by theophylline. While there still appears 
to be a cyclic AMP component related to the bronchodilat- 
ory actions of  antiasthmatics it seems highly probable that 
the adenosine antagonist activity of theophylline contributes 
significantly to its therapeutic actions in pulmonary tissue. 
Enprofylline (3-propylxanthine) is an especially effective 
antiasthmatic agent [80] with a minimal incidence of  side 
effects related to interactions with other tissues. This has 
been ascribed to the pharmacodynamic properties of this 
xanthine derivative. 

CARDIOTONIC ACTIONS 

Aminophylline, as already mentioned, has had limited use 
as a cardiotonic agent via its ability to block the negative 
chronotropic and dromotropic actions of adenosine [5]. The 
concentrations of  the xanthine to block adenosine activity 
are sufficiently high, however,  to also elicit ventricular ar- 
rhythmias due to increases in cardiac cyclic AMP levels. 
More selective adenosine antagonists, may therefore be use- 
ful as cardiotonics. 

RENAL MODULATORS 

Adenosine is an effective modulator of renin release from 
the macula densa cells of the kidney, acting as a signal trans- 
ducer in response to increase renal sodium loads [59,75]. 
Both A~ and A2 receptors are able to mediate renin release in 
a biphasic manner, the former inhibiting and the latter 
stimulating, release of  this important blood pressure regulat- 
ing peptide [97]. The purine can also cause renal vas- 
oconstriction. Caffeine may thus affect renin release by 
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b locking  an  inh ib i to ry  ac t ion  o f  a d e n o s i n e  at  A, r ecep to r s .  
The  diure t ic  ac t ions  o f  caffe ine  a p p e a r  to  be  due  to an  inhibi-  
t ion  of  solute  r e a b s o r p t i o n  [86]. 

IMMUNE FUNCTION 

X a n t h i n e s  h a v e  b e e n  impl ica ted  as t e r a togens  [27] and  by  
the i r  impl ied effects  as a d e n o s i n e  an tagon i s t s  may  be  ex- 
pec t ed  to r eve r se  the  ac t ions  of  a d e n o s i n e  on  i m m u n e  sys- 
t em  func t ion .  The  pur ine  can  modula te  an t igen  expres s ion ,  
inhibi t  mi togen ic  s t imula t ion  and  has  m a r k e d  i m m u n o s u p -  
r e s s a n t  ac t iv i ty  [89]. A d e n o s i n e  an tagon i s t s  m ay  also modify  
the  effects  of  a d e n o s i n e  on  neu t roph i l  func t ion  [19]. 
A d e n o s i n e  can  inhibi t  neu t roph i l  supe rox ide  fo rma t ion  and  
x a n t h i n e s  can  o v e r c o m e  this  effect  [20]. Whi le  this  effect  
would  be benef ic ia l  in regard  to the  e t iology of  
a the rosc le ros i s ,  such  effects  would  be  de l te r ious  to the  role 
of  neu t roph i l s  in p ro tec t ing  agains t  infect ion.  

CONCLUSIONS 

A n  inc reased  chemica l  effor t  to  make  more  po ten t ,  selec- 

t ive and  b ioava i lab le  xan th ines  has  s h o w n  this  class  of  com- 
p o u n d  to be  p ro to typ ic  a d e n o s i n e  an tagon is t s .  Based  on  the  
knowledge  regard ing  the  in v ivo  ac t ions  of  caffe ine and  
theophy l l ine  it appea r s  p robab le  tha t  such  agents  will be ef- 
fec t ive  as an t i a s thma t i c  and  card io ton ic  agents .  In addi t ion ,  
h o w e v e r ,  a cons ide rab l e  body  of  e v i d e n c e  would  indicate  
tha t  a d e n o s i n e  an tagon i s t s  may  have  po ten t i a l  use  in o the r  
t he rapeu t i c  a reas  w h e r e  the  pur ine  is k n o w n  to exer t  physi-  
ological  inf luence.  The  poss ibi l i ty  tha t  b ra in  specif ic  
a d e n o s i n e  an tagon i s t s  may  r e p r e s e n t  a t rue ly  nove l  and  ef- 
fec t ive  class  of  cogni t ive  e n h a n c e r s  awai t s  fu r the r  chemica l  
effor t  in this  a rea  wi th  a con t inued  focus  on  n o n - x a n t h i n e  
c o m p o u n d s .  
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